Synthesis and Structure of a Novel Antimony-Iron Cluster

Atta M. Arif, Alan H. Cowley,* and Marek Pakulski

Department **of** *Chemistry, The University of Texas at Austin, Austin, Texas 78712, U.S.A.*

The cluster $[Fe_2(CO)_8(\mu_4\text{-}Sb)]_2[Fe_2(CO)_6]$, (1), has been prepared by the reaction of SbCl₃ with Na₂[Fe(CO)₄] and the structure of (1) has been determined by X-ray crystallography.

Considerable interest is now apparent in hybrid clusters in which substituent-free (bare) main-group elements are incorporated into transition metal frameworks.¹ In the context of group *5,* several clusters have been reported featuring phosphorus,¹ arsenic,¹ and bismuth.^{1,2} However, much less is known about antimony-containing clusters. In fact, to the best of our knowledge $\text{[Rh}_{12}\text{Sb(CO)}_{27}]^{3-}$ and $\text{Sb}_2\text{[W(CO)}_{5}]_3$ constitute the only structurally authenticated examples of such $compounds^{3,4}$

Previously it has been demonstrated that the reaction of $PCl₃$ or AsCl₃ with Fe₂(CO)₉ results in chloride-containing clusters, $[Fe_2(CO)_8EFe_2(CO)_6Cl]$ (E = P or As).⁵ Interestingly, we find that the same compounds are produced when $\overline{PCl_3}$ or AsCl₃ is treated with an excess of Na₂[Fe(CO)₄] in the presence of Fe₂(CO)₉ in tetrahydrofuran solution. However, a comparable reaction with SbCl₃ results in a new type of main-group-transition metal cluster, $[Fe_2(CO)_8(\mu_4$ main-group-transition metal $Sb)$]₂[Fe₂(CO)₆] (1). Purification of (1) was effected by column chromatography (silica gel-n-hexane) and dark green

X-ray quality crystals (m.p. 230° C, decomp.) were grown from n-hexane solution at -20° C.[†]

The solid state structure of **(1)** comprises individual molecules with no significantly short intermolecular contacts. \ddagger

 \ddagger *Crystal data for* (1): $C_{22}O_{22}Fe_{6}Sb_{2}$, $M = 1194.81$, monoclinic, $C2/c$ $(No. 15)$, $a = 44.809(7)$, $b = 9.362(2)$, $c = 17.670(3)$ Å, $\beta =$ **111.53(2)^o,** $U = 6895.6$ \AA^3 **,** $Z = 8$ **,** $D_c = 2.302$ **g cm⁻³,** μ **(Mo-** K_{α} **) = 40.90** cm-l. A total of **5706** unique reflections was measured on an Enraf-Nonius CAD-4 diffractometer over the range $3.0 \le 20 \le 48.0^{\circ}$ **(8128** scan mode). An empirical absorption correction was applied, but no correction was made for decay **(<1%).** The structure was solved by direct methods and refined (difference Fourier, full-matrix, least squares) using 2812 reflections with $I > 3.0\sigma(I)$. The final residuals were $R = 0.0377$ and $R_w = 0.0461$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors. Issue No. **1.**

t Compound **(1)** had satisfactory analytical and spectroscopic characteristics.

Figure 1. View (ORTEP) of $[Fe_2(CO)_8(\mu_4-Sb)]_2[Fe_2(CO)_6]$, (1), and angles $(°)$ are as follows: Fe(1)–Fe(2) 2.846(2), Fe(1)–Sb(1) 2.557(1), Fe(2)-Sb(1) 2.551(1), Fe(3)-Sb(1) 2.504(1), Fe(4)-Sb(1) 2.493(1), Fe(3)-Sb(2) 2.471(1), Fe(4)-Sb(2) 2.508(1), Fe(3)-Fe(4) 2.857(2), Fe(5)-Sb(2) 2.555(1), Fe(6)-Sb(2) 2.566(2), Fe(5)-Fe(6)
2.840(2); Fe(1)-Sb(1)-Fe(2) 67.73(7), Fe(3)-Sb(1)-Fe(4) 69.74(6), 2.820(2); Fe(1)-Sb(1)-Fe(2) 67.73(7), Fe(3)-Sb(1)-Fe(4) 69.74(6),
2.840(2); Fe(1)-Sb(1)-Fe(2) 67.73(7), Fe(3)-Sb(1)-Fe(4) 69.74(6),
Fe(3)-Sb(2)-Fe(4) 70.02(6), Fe(5)-Sb(2)-Fe(6) 67.40(6), Sb(1)- $F_{\text{E}}(3)$ - $F_{\text{E}}(4)$, $F_{\text{E}}(3)$, $F_{\text{E}}(2)$ - $F_{\text{E}}(6)$, $F_{\text{E}}(1)$, $F_{\text{E}}(1)$, $F_{\text{E}}(2)$, $F_{\text{E}}(5)$ - $F_{\$ $Fe(6)$ 56.50(4), Sb(2)- $Fe(6)$ - $Fe(5)$ 56.12(4). showing the atom numbering scheme. Important bond lengths (**2**)

The antimony-iron skeleton possesses approximately C_{2v} symmetry, the C_2 axis lying on the mid-point of the $Fe(3)$ -Fe(4) axis (Figure 1). The structure consists of a central $Fe₂Sb₂$ butterfly arrangement which is similar in conformation to those of bis(μ -phosphido) or bis(μ -arsenido)Fe₂(CO)₆ complexes.⁶ In turn, each antimony atom is involved in an $Fe₂Sb$ ring, thereby achieving a μ_4 -spiro geometry. These $SbFe₂(CO)₈$ moieties are reminiscent of the 'closed' stibinidene complex **(2).7**

As in the case of **(2),** the Fe-Fe bond lengths are somewhat long [average 2.843(2) **A]** but nevertheless consistent with single bonding. The Sb-Fe bond lengths in the Sb[Fe(CO)₄]₂ moieties [average $2.555(1)$ Å] are also consistent with a bond order of unity. Note, however, that the Sb-Fe bond lengths in the Sb_2Fe_2 core are somewhat shorter [2.494(1) Å], thus

suggesting that each Sb atom donates three electrons to the butterfly subunit and two electrons to the $SbFe₂$ triangles. Each Sb atom is co-ordinated to four Fe atoms, and all the iron atoms exhibited distorted octahedral geometries. The dihedral angle between the $Fe(1)$ - $Fe(2)$ - $Sb(1)$ and $Fe(3)$ - $Fe(4)$ -Sb(1) planes is 72.4 \degree and the fold angle along Fe(3)–Fe(4) is 109.3'.

Finally, we note that although it is possible to prepare bismuth-tungsten clusters by treatment of $[W(CO)_5]^{2-}$ with bismuth chlorides,⁸ the reaction of $[Fe(CO)₄]^{2-}/Fe₂(CO)₉$ mixtures with BiCl₃ failed to produce bismuth-iron clusters.

We thank the Texas Advanced Technology Program, the Robert **A.** Welch Foundation, and the National Science Foundation for support.

Received, 17th November 1986; Com. 1631

References

- 1 J. N. Nicholls, *Polyhedron,* 1984, 3, 1307; W. A. Herrmann, *Angew. Chem., Int. Ed. Engl.,* 1986,25,56.
- 2 M. R. Churchill, J. C. Fettinger, K. H. Whitmire, and C. Lagrone, J. *Organomet. Chem.,* 1986, 303, 99, and references therein.
- 3 J. Vidal, *Inorg. Chem.,* 1981,20,243; *J.* Vidal and J. M. Troup, J. *Organomet. Chem.,* 1981,213, 351.
- 4 G. Huttner, U. Weber, B. Sigwarth, and 0. Scheidsteger, *Angew. Chem., Int. Ed. Engl.,* 1982,21, 215.
- *5* G. Huttner, G. Mohr, B. Pritzlaff, J. Von Seyerl, and L. Zsolnai, *Chem. Ber.,* 1982, 115, 2044.
- 6 G. Wilkinson, F. G. A. Stone, and E. W. Abel, 'Comprehensive Organometallic Chemistry,' Pergamon Press, Oxford, 1982, vol. 9, pp. 1312-1324.
- 7 A. H. Cowley, N. C. Norman, M. Pakulski, D. L. Bricker, and D. H. Russell, J. *Am. Chem.* **SOC.,** 1985, 107,8211.
- 8 G. Huttner, U. Weber, and L. Zsolnai, *2. Naturforsch., Teil B,* 1982, *37,* 707; A. M. Arif, A. H. Cowley, N. C. Norman, and M. Pakulski, *J. Am. Chem. Soc.*, 1985, 107, 1062.